A Framework for the Parallel Processing of Datalog Queries

Sumit Ganguly
Avi Silberschatz
Shalom Tsur

Department of Computer Sciences
The University of Texas
Austin, Texas 78712

Abstract
This paper presents several complementary methods for the parallel, bottom-up evaluation of Datalog queries. We introduce the notion of a discriminating predicate, based on hash functions, that partitions the computation between the processors in order to achieve parallelism. A parallelization scheme with the property of non-redundant computation (no duplication of computation by processors) is then studied in detail. The mapping of Datalog programs onto a network of processors, such that the result is a non-redundant computation, is also studied. The methods reported in this paper clearly demonstrate the trade-offs between redundancy and interprocessor-communication for this class of problems.

1 Introduction
The efficient bottom-up evaluation of queries in a deductive database, defined by Datalog programs, is presently an active area of research ([14, 4]). The bulk of the work has centered around optimization techniques for the sequential evaluation of such programs. Recently, the idea of using parallel evaluation as a means for improving performance has been suggested by Wolfson, Silberschatz and others [19, 18, 6, 8].

The problem of characterizing Datalog programs that belong to the NC complexity class has been theoretically investigated by Kanellakis, Van Gelder, Ullman, and others [15, 1, 11]. A program is in NC, if it can be evaluated in polylogarithmic time given a polynomial number of processors. This, however, is not very useful for the type of database processing that we are concerned with for the following two reasons:

- A polynomial number of processors in the size of the database may not be realistic given the current technology, since the size of real database systems may be in the order of hundreds of megabytes.
- Algorithms in the NC class are assumed to communicate extensively and hence, their theory is of little utility in non-shared-memory architectures.

In this paper we assume an environment with a constant (though unbounded) number of processors, that communicate either through message passing, or through shared memory. We present several methods for the parallel, bottom-up evaluation of Datalog queries.

Our paper extends and generalizes the original results of Wolfson et al. [19, 18, 6]. In particular, our scheme differs from the published ones in the following respects:

1. The strategies presented in [19, 18, 6] do not allow for partitioned base relations, i.e., all of the participating processors are assumed to share the same base data. The parallelization scheme presented in this paper allows for evaluations over partitioned base relations in many cases. For instance, the parallel computation of the transitive closure by Valduriez and Khoshafian [16], is a particular case of our method, as we show in Section 4.

2. The strategy presented by Dong [8] is based on decomposing databases such that they do not share the set of constants appearing in each. The practical limitations of this approach are the following: First, arbitrary fragmentations of the database may actually share constants. Second, the scheme has limited scalability.
Our method of mapping the Datalog programs to processors results in non-redundant computations in the sense that the same firing is never used by two distinct processors.

By restricting our attention to linear rules, we show that, often, limited forms of communication among the processors are sufficient. For the class of linear rules, we develop a technique for deriving a minimal communicating network in the sense, that links exist in this network only for those pairs of processors that need to communicate during the computation. This derivation can be performed at compile time and can be used to adapt the parallel execution onto an existing parallel architecture.

We show that the scheme for parallelizing linear programs without communication, as presented in [18], is a special case of a general scheme described in Section 6. Our scheme explicitly demonstrates the trade-off between non-redundancy and communication, and is similar in spirit to the results presented in [13].

The remainder of the paper is organized as follows. In Section 2 we present the preliminaries and the notation we use throughout the paper. In Section 3 we introduce a non-redundant parallelization scheme for linear rules through the use of discriminating variables and hash functions. In Section 4, we demonstrate the generality of our scheme by deriving some previously known examples, and also a new example. In Section 5 we discuss the relationship between the discriminating variables and the resulting minimal communication network. Section 6 generalizes our results for linear rules and shows that a trade-off exists between non-redundancy and communication. In Section 7 we present a general non-redundant scheme applicable to all Datalog programs. We conclude in Section 8 and suggest extensions to this work.

2 Preliminaries and Notation

A Datalog program is a finite set of rules. A rule consists of an atom \(Q \), designated as the head, and a conjunction of one or more atoms, denoted by \(Q_1, \ldots, Q_k \) designated as the body. Such a rule is denoted as \(Q \leftarrow Q_1, \ldots, Q_k \). An atom is a predicate symbol with a constant or a variable in each of its arguments. A ground atom is an atom with a constant in each of its arguments. A p-atom is an atom having \(p \) as the predicate symbol.

A substitution \(\theta \) is a finite set of the form \(\{ v_i/t_i, \ldots, v_n/t_n \} \), where each \(v_i \) is a variable, each \(t_i \) is a term (constant or variable) distinct from \(v_i \), and the variables \(v_1, \ldots, v_n \) are distinct. \(\theta \) is called a ground substitution if the \(t_i \) are all constants.

A Datalog program is a finite set of rules whose predicate symbols are divided into two disjoint subsets the base predicates (also called extensional predicates) and the derived predicates (also called intensional predicates). The base predicates may not appear in the head of any rule in a Datalog program. An example of a Datalog program is the following:

\[
\begin{align*}
\text{anc}(X, Y) & \leftarrow \text{par}(X, Y) \\
\text{anc}(X, Y) & \leftarrow \text{par}(X, Z), \text{anc}(Z, Y)
\end{align*}
\]

The relation \(\text{par} \) above is an extensional relation, where \(\text{par}(X, Y) \) means that \(X \) is a parent of \(Y \). The relation \(\text{anc} \) above is a derived relation, where \(\text{anc}(X, Y) \) means that \(X \) is an ancestor of \(Y \). The first rule states that if \(X \) is a parent of \(Y \), then \(X \) is an ancestor of \(Y \). The second rule recursively states that, if \(X \) is a parent of \(Z \), and \(Z \) is an ancestor of \(Y \), then \(X \) is an ancestor of \(Y \).

An input to a program \(P \) is a relation for each base predicate. An output of \(P \) is a relation for each derived predicate of \(P \). The declarative semantics for the output is the smallest model satisfying \(P \) that contains the input relations [2]. A predicate \(Q \) in a program derives a predicate \(R \) if it occurs in the body of a rule whose head is an \(R \)-atom. A rule is recursive if the predicate in its head transitively derives some predicate in its body.

The theory of logic programming is comprehensively treated in [12] and in [2].

In sections 3 through 6, we restrict our attention to linear rules which are Datalog programs with one linear recursive rule \(r \) and one non-recursive (exit) rule \(e \). Each such program may be canonically represented as:

\[
\begin{align*}
e & t(X) \leftarrow s(Z) \\
r & t(Y) \leftarrow t(V), b_1, \ldots, b_k
\end{align*}
\]

where:

- \(t \) is the output (or derived) predicate symbol
- \(s \) is a base relation
- \(Z \) is the sequence of variables appearing in the head of the exit rule
- \(X \) is the sequence of variables appearing in the head of the recursive rule
- \(Y \) is the sequence of variables which appear as arguments to the unique occurrence of \(t \) in the recursive rule
- \(b_1, b_2, \ldots, b_k \) are the atoms with base predicates appearing in the body of the recursive rule
- In order to ensure the safety property (i.e., finite set of answers), we assume that every variable appearing in the head of the recursive rule also appears in its body.

There are several known techniques for the bottom-up evaluation of Datalog programs, [4, 14]. In this paper, we assume that the bottom-up evaluation of Datalog programs is done using semi-naïve evaluation [4, 14].
3 No redundancy

The basic step in the semi-naive evaluation of Datalog programs [3] consists of substituting the variables in a rule by constants in the database such that each ground atom in the body of the rule is true in the extensional database or in the (partially computed) intensional database. We divide the workload between the processors by partitioning the set of possible ground substitutions used by the semi-naive evaluation. This is done by using discriminating functions based on hashing. Thus each processor uses only a subset of the set of possible ground substitutions, and two distinct processors do not use the same ground substitution. We now formally describe our parallelization scheme.

Let \(L \) be a linear sirup with a recursive rule \(r \) and an exit rule \(e \). Let \(\nu(r) \) be any sequence of variables, all of which appear in the recursive rule \(r \). This sequence is referred to as the discriminating sequence for the recursive rule \(r \). Similarly, let \(\nu(e) \) be any sequence of variables, all of which appear in the exit rule \(e \). This sequence is called the discriminating sequence for variables for the exit rule \(e \). Finally, let \(P \) be a finite set of processors, \(\{1, 2, \ldots, n\} \), on which the program is to be executed, and let \(h \) and \(h' \) be two functions defined as follows:

- \(h \) set of ground instances of \(\nu(r) \rightarrow P \)
- \(h' \) set of ground instances of \(\nu(e) \rightarrow P \)

These two functions are referred to as the discriminating functions.

Given a linear sirup \(L \), we derive a set of Datalog programs to be executed at the various processors. The parallel execution of this derived set of Datalog programs is equivalent (i.e., produces the same answer for every input) to the sequential execution of \(L \). Let \(Q_s \) denote the program to be executed at processor \(i \). It consists of the following five execution steps:

1. Initialization. A new predicate \(t_{out}^i \) is defined whose interpretation is the set of all the \(t \)-tuples generated at processor \(i \):

 \[
 t_{out}^i(Z) \rightarrow s(Z), h'(v(e)) = 1
 \]

2. Processing. A new predicate \(t_{in}^i \) is defined whose interpretation is the set of all \(t \)-tuples that are input to processor \(i \) at some point in the execution. \(b_m^i \) is the fragment of the base relation \(b_m \) that is accessed at processor \(i \). Its computation is given later in this section:

 \[
 t_{out}^j(X) \rightarrow t_{in}^j(P), b_j^1, \ldots, b_j^k, h(v(r)) = 1
 \]

3. Sending. For every \(i \) and \(j \in P \), the predicate symbol \(t_{ij} \) represents the set of tuples transmitted from processor \(i \) to processor \(j \). For every \(j \in P \), we introduce the following rule in \(Q_s \):

 \[
 t_{ij}(P) \rightarrow t_{out}(P), h(v(r)) = j
 \]

4. Receiving. For every \(i \) and \(j \in P \), the predicate \(t_{ji} \) represents the set of all the tuples transmitted from processor \(j \) to processor \(i \). \(W \) is a sequence of new distinct variables not appearing in the original program. For every \(j \in P \), we introduce the following rule in \(Q_s \):

 \[
 t_{ji}(W) \rightarrow t_{in}(W)
 \]

5. Final pooling. This rule states that all the tuples generated by all the processors are stored in a single relation \(W \) as the answer to the query. \(W \) is the same sequence of variables as in the receiving step:

 \[
 t(W) \rightarrow t_{out}(W)
 \]

The program \(Q_s \) consists of several recursively defined predicates, namely, \(t, t_{out}^i, t_{in}^i, \) and \(t_{ij}^i \). The theorem below asserts the relationship between the predicate \(t \) defined in the given program \(L \) and one of the predicates of \(Q_s \), namely, \(t \).

Theorem 1: Let \(Q = \bigcup_{i \in P} Q_s \), as defined above obtained by rewriting a given linear sirup \(L \) with recursive predicate \(t \). Then for every input of base relations, the interpretation of the predicate \(t \) in the least model of \(Q \) is identical to the interpretation of \(t \) in the least model of \(L \).

We first describe the abstract architecture on which the parallel program is executed. Given a set \(P \) of processors, we assume that a processor \(i \) in \(P \) may communicate with every other processor \(j \in P \) (This is an idealization and will be relaxed in the later sections.) We assume that communication is done by a channel numbered \(j \), denoting that the sending processor is \(i \) and the receiving processor is \(j \). We require that if a processor \(i \) puts some data in channel \(j \), then processor \(j \) (and no other processor except \(j \)) receives this data without error within some finite time. This abstraction is easily implementable by either shared memory or message passing.

The parallel execution proceeds with each processor evaluating the Datalog program \(Q_s \) using a semi-naive evaluation. The relations \(t_{out}^i \) and \(t_{in}^i \) are local to processor \(i \), for each \(i \in P \). The predicates \(t_{ij}^i \), for \(i, j \in P \), represent the channel \(j \) in the abstract architecture described above. Hence, addition of tuples to the predicate \(t_{ij}^i \), during the semi-naive evaluation, should be interpreted as processor \(i \) sending the tuples to processor \(j \), along channel \(j \). Similarly, assignment of tuples from the predicate \(t_{ij}^i \) onto another predicate should be interpreted as processor \(j \) receiving the tuples sent by processor \(i \), along channel \(j \). The general structure of the parallel execution is:

- evaluate initialization rule
- repeat
- evaluate processing rule
- evaluate sending rules
- evaluate receiving rules
- until “termination”

where “termination” is the condition that all processors are idle and all channels are empty.
We now describe the implementation of each of the rules and the condition for parallel termination in some detail

1 Initialization. The following rule is evaluated according to a semi-naive evaluation

\[t_{out}(Z) \rightarrow s(Z), h'(v(e)) = 1. \]

2 Processing. The following rule is evaluated using a semi-naive evaluation scheme

\[t_{out}(X) \rightarrow t_{in}(Y), b_1, \ldots, b_k, h(v(r)) = 1. \]

If the variables appearing in \(v(r) \) do not appear in \(b_k \), then \(b_k = b_k \). Otherwise, \(b_k \) is defined as follows

\[b_k = b_k, h(v(r)) = 1. \]

3 Sending. Once tuples are generated at some iteration by processor \(i \), they must be sent to different processors. The following rule

\[t_{out}(Y) \rightarrow t_{in}(Y), h(v(r)) = j. \]

sends only those subset of tuples generated at processor \(i \), which might successfully fire the processing rule of processor \(j \). Duplicate tuples generated by the same processor may be detected by a difference operation and need not be sent repeatedly.

4 Receiving. In the receive step, duplicate tuples received must be eliminated. This is done by a difference operation. Thus, after executing the processing step and the sending step, each processor collects the tuples received from all other processors, selects the set of new tuples received and uses them to fire the processing step in the next iteration. Note that the receives are asynchronous, that is, processor \(i \) does not wait for data from processor \(j \) if on a particular iteration, it does not receive any data from processor \(j \). This is a very important property of the parallel executions resulting from our schemes.

5 Final Pooling. The tuples generated by all the processors are pooled together in a common relation, which depending upon the requirements of the query and the underlying architecture, might require communication from all processors to a single processor.

6 Parallel Termination. The parallel algorithm terminates when every processor in \(P \) is idle and all channels are empty. This may be detected by standard algorithms of Distributed Computing as given in [5, 7].

So far, we have described the parallel execution of the parallel program and proved its correctness. However, in order to be effectively parallel, we must restrict the choice of the discriminating sequences.

The rule in the processing step of \(Q_1 \) would be evaluated as the following relational algebra expression:

\[\prod_{i=1}^{n}(\sigma_{v(r)}(Y)) = (t_{in}(Y) \bowtie b_1 \bowtie b_k) \]

The details may be found in [14]. Consider the evaluation resulting from a choice of \(v(r) \). If the variables appearing in \(v(r) \) do not appear in any of the atoms in the body, then the selection cannot be pushed into the joins. In that case each processor computes the entire join expression, thus repeating the computation done by a sequential processor and defeating the purpose of parallelism. Thus, for the remainder of the paper, we assume that all the variables appearing in a discriminating sequence for the recursive rule must also appear in at least one atom in the body of the recursive rule.

The following definition precisely defines the notion of non-redundancy.

Definition 1: A parallelization scheme is called semi-naive non-redundant, if for any program within the scheme, the total number of times a tuple is generated by all the processors is no more than the number of times the same tuple is generated by a sequential semi-naive evaluation of the same program on the same data.

Theorem 2: The parallelization scheme described above is semi-naive non-redundant.

4 Examples

In this section we demonstrate our parallelization technique by applying it to the following Datalog program:

\[\text{anc}(X, Y) \rightarrow \text{par}(X, Y) \]

\[\text{anc}(X, Y) \rightarrow \text{par}(X, Z), \text{anc}(Z, Y) \]

The relation \(\text{par} \) above is a base relation, where, \(\text{par}(X, Y) \) means that \(X \) is the parent of \(Y \).

We assume that there are \(N \) processors, numbered from 1 through \(N \). Thus \(P = \{1, 2, \ldots, N\} \). We present three parallel algorithms derived from our scheme by using different choices of discriminating sequence of variables. The first algorithm derived is the one presented by Wolfson and Silberschatz in [19]. This algorithm does not require any communication between the processors, but requires that the base relation \(\text{par} \) be shared among the processors. The second algorithm derived is presented by Valduriez and Khoshafian in [16]. This algorithm works on any arbitrary fragmentation of the relation \(\text{par} \), although in general, it requires communication. The third algorithm is a new one that was developed using our parallelization scheme. This algorithm lies between the other two algorithms in the sense that it requires less communication than the second one, but only allows for some possible fragmentations, whereas it requires more communication than the first one, but does not require that the base relation be shared.

4.1 Example 1

Let \(v(r) = v(e) = \{Y\} \), and let \(h' = h \) be an arbitrary discriminating function on the domain of \(Y \) with range \(\{1, 2, \ldots, N\} \). The rewritten program for processor \(i \), denoted \(Q_i \), earlier, is defined as follows.

- **Initialization**

\[\text{anc}_{in}(X, Y) \rightarrow \text{par}(X, Y), h(Y) = 1. \]
• Processing
 \[\text{anc}^\text{out}(X, Y) - \text{par}^*(X, Z), \text{anc}(Z, Y), h(Y) = 1 \]
 • Sending For every \(j, 1 \leq j \leq N \),
 \[\text{anc}_j(Z, Y) - \text{anc}^\text{out}(Z, Y), h(Y) = j \]
 • Receiving For every \(j, 1 \leq j \leq N \),
 \[\text{anc}^\text{in}_j(W_1, W_2) - \text{anc}_j(W_1, W_2) \]
 • Final Pooling
 \[\text{anc}(W_1, W_2) - \text{anc}^\text{out}(W_1, W_2) \]

Since \(v(r) = (Y) \), and \(Y \) does not appear in \(\text{par}(X, Z) \), it follows that \(\text{par}^* = \text{par} \). In other words, the base relation \(\text{par} \) must be either shared or replicated by the processors.

The first two rules are the only rules that derive tuples in \(\text{anc}^\text{out} \). Therefore, if \((a, b) \in \text{anc}^\text{out}, \) then \(h(b) = 1 \). Hence, if \(i \neq j \), then evaluating the sending rule from processor \(i \) to processor \(j \) (namely, \(\text{anc}_j(Z, Y) - \text{anc}^\text{out}(Z, Y), h(Y) = j \)) does not yield any tuple. That is, \(\text{anc}_j = \emptyset \), whenever \(i \neq j \).

Thus, by the above choice of the discriminating sequence of variables, no communication is incurred during the recursive computation. Some communication is incurred, however, during the final pooling of the output to a common destination.

4.2 Example 2

Suppose that the base relation \(\text{par} \) is horizontally partitioned among the processors. Let the partition in processor \(i \) be denoted by \(\text{par}^i \). Thus, for \(i \neq j \), \(\text{par}^i \cap \text{par}^j = \emptyset \), and \(\bigcup_{i=1}^N \text{par}^i = \text{par} \).

Let \(v(r) = (X, Z) \) and \(v(e) = (X, Y) \). Let \(h' = h \) be defined as follows

\[h(a, b) = 1 \text{ if and only if } (a, b) \text{ is a tuple in } \text{par}^i \]

Hence, \((\text{par}(X, Y) \land (h(X, Y) = 1)) \equiv \text{par}^*(X, Y) \). The rewritten program \(Q_i \), executed by processor \(i \), is defined as

• Initialization
 \[\text{anc}^\text{out}(X, Y) - \text{par}^*(X, Y) \]
 • Processing
 \[\text{anc}^\text{out}(X, Y) - \text{par}^*(X, Z), \text{anc}^\text{in}(Z, Y) \]
 • Sending For every \(j, 1 \leq j \leq N \),
 \[\text{anc}_j(Z, Y) - \text{anc}^\text{out}(Z, Y), h(X, Z) = j \]
 • Receiving For every \(j, 1 \leq j \leq N \),
 \[\text{anc}^\text{in}_j(W_1, W_2) - \text{anc}_j(W_1, W_2) \]
 • Final Pooling
 \[\text{anc}(W_1, W_2) - \text{anc}^\text{out}(W_1, W_2) \]

Thus the execution of \(Q_i \) needs access to only a given fragment \(\text{par}^i \) of the \(\text{par} \) relation, as intended.

Consider the rule that represents the sending operation from processor \(i \) to processor \(j \), namely, \(\text{anc}_j(Z, Y) - \text{anc}^\text{out}(Z, Y), h(X, Z) = j \). Equivalently, this may be rewritten as follows

\[\text{anc}_i = \{(a, b)| (a, b) \in \text{anc}^\text{out} \land \exists c, a \in \text{par}^i \} \]

Thus, \(\text{anc}_i \subseteq \text{anc}^\text{out} \). Since the relation \(\text{par}^i \) is not available at processor \(i \), the second conjunct of the above expression cannot be verified at processor \(i \). Hence, all tuples in \(\text{anc}^\text{out} \) are communicated to processor \(j \). Note, that in this case, the extra communication does not make the parallel execution either incorrect or redundant.

4.3 Example 3

The two examples presented above depict two extremes in the properties of interprocessor communication and sharing/replication of the base relation \(\text{par} \). We now present an algorithm that lies between these two extremes. Let \(v(e) = (X), v(r) = (Z) \) and let \(h' = h \) be any discriminating function on the domain of \(X \) and \(Z \).

The rewritten program \(Q_i \), executed by processor \(i \), is

• Initialization
 \[\text{anc}^\text{out}(X, Y) - \text{par}(X, Y), h(X) = 1 \]
 • Processing
 \[\text{anc}^\text{out}(X, Y) - \text{par}(X, Z), \text{anc}^\text{in}(Z, Y), h(Z) = 1 \]
 • Sending For every \(j, 1 \leq j \leq N \),
 \[\text{anc}_j(Z, Y) - \text{anc}^\text{out}(Z, Y), h(Z) = j \]
 • Receiving For every \(j, 1 \leq j \leq N \),
 \[\text{anc}^\text{in}_j(W_1, W_2) - \text{anc}_j(W_1, W_2) \]
 • Final Pooling
 \[\text{anc}(W_1, W_2) - \text{anc}^\text{out}(W_1, W_2) \]

We note the following properties of \(Q_i \):

1. Let \((a, b) \) be a tuple in \(\text{anc}^\text{out} \). Then, according to the sending rule, a tuple \((a, b) \) is sent to processor \(j \) only if \(h(b) = j \). Thus every tuple is sent to, and processed by a unique processor. This differs from Example 2, where, the output of a processor was sent to all the processors.

2. After the firing of the initialization rule, the processing step of \(Q_i \) requires access to those tuples of \(\text{par}(X, Z) \) such that \(h(Z) = 1 \). Hence the accesses to the \(\text{par} \) relation by different processors do not overlap, and thus there is no contention during the recursive processing.

The extent of communication is less here, as compared to Example 2. However, all possible horizontal fragmentations of \(\text{par} \) is allowed in Example 2, but not all fragmentations are allowed here. In Example 1, the relation \(\text{par} \) was replicated/shared among all the processors, whereas, in this case, each of the processors accesses a disjoint fragment of the \(\text{par} \) relation. However, the algorithm here involves communication, whereas, in Example 1, there is no communication between the processors. Thus, this example essentially depicts a trade-off between fragmentation and communication.
5 Network Connectivity

In Section 3, we presented a general strategy for the parallel execution of linear Datalog slrups on a set of processors. The abstract architecture assumed that every processor could communicate with every other processor. In this section, we study how the rules of a program and the choice of the discriminating variables affect the interconnections necessary between the processors. We show that a given discriminating sequence and a given discriminating function may yield a parallel execution where some of the communication channels are never utilized. This property is data-independent, in the sense that for every input of base relations to the linear sirup, the parallel execution never utilizes those channels. This implies that it may not be necessary for a processor to communicate with every other processor. Moreover, if the discriminating functions are chosen to be linear functions (subject to some restrictions), then one can derive the optimal topological structure of the network of processors (defined later) by solving a system of linear equations.

Definition 2: Consider a linear recursive rule with the head \(t(X_1, X_2, \ldots, X_m) \) and the recursive atom in the body \(t(Y_1, Y_2, \ldots, Y_m) \). A dataflow graph for this rule is a directed graph \(G = (V, E) \) where

- \(V \subseteq \{1, 2, \ldots, m\} \) and \(1 \in V \) if \(\exists j \in \{1, 2, \ldots, m\} \) such that \(Y_j = X_1 \)
- An edge \(i \rightarrow j \) exists in the graph if \(Y_i = X_j \)

Example 4: Consider the following recursive rule:

\[
p(U, V, W) \rightarrow p(V, W, Z), p(U, Z)
\]

The dataflow graph for this recursive rule is presented in Figure 1.

![Figure 1](image)

The edge \(1 \rightarrow 2 \rightarrow 3 \) is in the graph because the variable \(V \) appears in the first attribute position in the predicate \(p \) in the body and also appears in the second attribute position in the head. Similarly, the edge \(2 \rightarrow 3 \) is in the graph because the variable \(W \) appears in the second attribute position in the predicate \(p \) in the body and also appears in the third attribute position of the head.

The following theorem states a property of dataflow graphs. It is similar to the theorem presented about pivotal programs in [19].

Theorem 3: Consider a set of processes \(P \) and a linear sirup with a corresponding dataflow graph \(G \). If \(G \) contains a cycle, then there exists a choice of discriminating sequence of variables, and functions such that the parallel execution of the linear sirup on \(P \), does not require any communication.

Example 5: Consider the ancestor example presented in the earlier section. The dataflow graph for it is presented in Figure 2. Hence, as shown in Section 4, there is no requirement for communication between the processors when the discriminating variable is \(Z \).

![Figure 2](image)

Unfortunately, it is not always the case that a dataflow graph contains a cycle, as shown in Example 4. In such cases, the dataflow graph still provides us with an insight into the choice of the discriminating variables so that the interconnections between the processors can be reduced. To formalize this, we define the notion of a network graph.

Definition 3: Given a set of processors \(P \), we define a network graph over \(P \) as a directed graph \(N = (V, E) \) where \(V = P \) and \(E \) is any subset of \(P \times P \).

A directed edge \(i \rightarrow j \) in \(N \) means that in the parallel execution of a program, data communication from processor \(i \) to processor \(j \) is permissible. The absence of a directed edge from \(i \) to \(j \) indicates that processor \(i \) may not communicate with processor \(j \), either directly or indirectly. Hence routing of information from \(i \) to \(j \) via other intermediary processors is not permitted during the parallel execution.

Example 6: Consider the following program:

\[
p(X, Y) \rightarrow p(Y, Z), r(X, Z)
\]

Let \(g \) be any arbitrary function on the domain of variables \(X, Y \), and \(Z \), with range \((0, 1)\). Let \(u(e) = (X, Y) \), and \(v(r) = (Y, Z) \). Let \(h'(a, b) = h(a, b) = (g(a), g(b)) \). Thus, there are four possible values that \(h \) can take, \((00), (01), (10) \) and \((11)\). Accordingly, let \(P = \{(00), (01), (10), (11)\} \). Below, we consider some of the rules of the rewritten program executed at processor \(00 \).

- Initialization
 \[
p_{\text{out}}^{(00)}(X, Y) : = g(X, Y), h(X, Y) = (00)
\]
- Processing
 \[
p_{\text{out}}^{(00)}(X, Y) : = p_{\text{in}}^{(00)}(Y, Z), r(X, Z), h(Y, Z) = (00)
\]
- Sending
 \[
p_{(00)}^{(10)}(Y, Z) : = p_{\text{out}}^{(00)}(Y, Z), h(Y, Z) = (11)
\]

We see from the processing and the initialization rules that if \((a, b) \in p^{(00)}\), then \(g(b) = 0 \). Consider the rule that represents the operation of sending tuples from processor \(00 \) to processor \(01 \). Then, if \((a, b) \in p_{(00)}^{(01)}\), then by the sending rule, \((a, b) \in p_{\text{out}}^{(00)}\), and \(h(a, b) = (01) \). If \(h(a, b) = (01) \), then \(g(b) \) must be...
1. Thus we conclude that for any input of the base
relations and any choice of the function \(y \), there is no
communication from processor \((00)\) to processor \((01)\).
By the same argument, there is no communication from
processor \((00)\) to processor \((11)\).

On the other hand, if \((a, b) \in p_{\text{out}}^{(00)}\), then \(g(a)\) could
be 1, and there is the possibility of communication from
processor \((00)\) to processor \((10)\). Carrying out this anal-
ysis for every other processor, yields the network graph
shown in Figure 3.

Given a linear sirup \(L \), a sequence of discriminating
variables, and discriminating functions satisfying
some conditions, there is an algorithm to generate the
minimal network graph \(N \) to evaluate \(L \). The network
is minimal in the sense that, for every communication
edge in the network, there exists an input database,
such that the parallel execution of \(L \) on this database,
results in communication along that edge. This algo-

![Figure 3](image)

Example 7: Consider the Datalog program

\[
p(U, V, W) \rightarrow s(U, V, W) \\
p(U, V, W) \rightarrow p(V, W, Z), q(U, Z)
\]

The dataflow graph for this program as explained in
Example 4 is 1 \(\leftrightarrow \) 2 \(\rightarrow \) 3. Let \(v(e) \) be \((V, W, Z)\), and \(u(e) \) be \((U, V, W)\). Let \(g \) be an arbitrary function from
the constants of the database to the set \{0, 1\}. Define
the discriminating functions \(h \) and \(h' \) to be the following
linear function

\[
h(a_1, a_2, a_3) = h'(a_1, a_2, a_3) = g(a_1) - g(a_2) + g(a_3)
\]

Hence the range of \(h \) is \{0, 1, 2\} and thus, \(P = \{0, 1, 2\}\). If processor \(i \) communicates with processor \(j \), then, there must be a tuple \(p(a_1, a_2, a_3) \) that is
produced by processor \(i \) and used as input by processor \(j \). Let \(g(a_1) = b_1, g(a_2) = b_2 \) and \(g(a_3) = b_3 \). If \(p(a_1, a_2, a_3) \) is used as input at processor \(j \) then,

\[
h(u_1, u_2, u_3) = b_1 - b_2 + b_3 = j
\]

6 Trade-Off

In this section we present a scheme that exhibits a
trade-off between redundancy and communication. We
start our discussion by presenting a parallelization
scheme that requires no communication. This scheme
was first presented in [18].

Let \(L \) be a linear sirup, and let \(v(e) \), \(\mathcal{P} \) and \(h' \) be
as defined in Section 3. The program to be executed
at processor \(i \), consists of the following three execution
steps.
Initialization. A new predicate \(t' \) is defined whose interpretation is the set of all \(t \)-tuples that are processed at processor \(i \) at some point in the execution
\[
(2) \quad s(Z), h'(v(c)) = 1
\]

2 Recursive Processing
\[
t'(X) - t'(Y), b_1, \ldots, b_k
\]

3 Final Pooling.
\[
t(W) - t'(X)
\]

The parallel execution of the above program on the abstract architecture proceeds in exactly the same manner as described in Section 3. Note that the major distinction between the program \(R_i \) and the program \(Q_i \) defined in Section 3 is that the discriminating functions \(h_i \) used by the processors may be different from one another. In \(Q_i \), this was not allowed.

In operational terms, this rewriting allows a processor to transmit any arbitrary fragment of the computed result to the other processors and retain the remaining for self-processing. The decision as to whether to communicate tuples is a local decision, since the various \(h_i \)'s may be distinct. However, such flexibility may result in redundant computation with the advantage of less communication. The correctness of the transformation is asserted in the next theorem.

Theorem 4: Let \(R = \bigcup_{i \in P} R_i \), where the \(R_i \)'s are obtained from a given linear sirup \(L \) as defined above. Then for every input of base relations, the interpretation of \(t \) in the least model of \(R \) is identical to the interpretation of \(t \) in the least model of \(L \).

Having established the correctness of the transformation, let us now examine some of the properties of this scheme.

1. Let \(h_i(a_1, a_2, \ldots, a_m) = 1 \) for every tuple \((a_1, a_2, \ldots, a_m) \); if \(i \neq j \), the set of tuples transmitted from processor \(i \) to processor \(j \) is empty. Hence for this specific choice of the discriminating functions, the parallel execution does not require any communication, and proceeds exactly like the one presented in the beginning of the section.

2. Suppose that \(h_i = h_j \) for every \(i \in P \). The rewritten program for processor \(i \) now looks as follows:
\[
t'_{\text{out}}(Z) - s(Z), h'(v(c)) = 1
\]
\[
t'_{\text{out}}(X) - t'_{\text{in}}(Y), b_1, \ldots, b_k
\]
\[
t_{\text{in}}(W) - t_{\text{out}}(W)
\]

Recall that for this section, we have restricted that all variables in \(v(r) \) must also appear in \(Y \). Hence \(t'_{\text{in}}(Y) \Rightarrow (h(v(r)) = 1) \). Therefore, this program is identical to the program \(Q_i \) presented in Section 3. Thus if each processor uses the same discriminating function for the recursive rule, then the parallel computation is non-redundant.
Different choices of discriminating functions \(h \) and \(h' \) may result in different execution schemes. In general, the parallel execution is not completely non-redundant, and may require communication. We see that in non-redundant execution (i.e., when \(h_1 = h \) for all \(i \)), every tuple is processed by a unique processor, and hence if this tuple is produced by different processors, then some communication is incurred to transfer all of them to the same destination. However, if uniqueness of processing sites is not maintained for every tuple, but instead, some tuples are processed at the same processor where they were generated, then non-redundancy may be lost, at the advantage of less communication. The above parallelization scheme vividly demonstrates the trade-off between communication and redundancy.

By varying the extent of communication in a substitution-based parallel execution, we get executions which are points along a spectrum whose extremes are characterized by non-redundancy and no communication.

7 A General Scheme

In this section, we extend the parallelization scheme presented in Section 3 to include all Datalog programs (that is, non-linear programs, and programs with more than one recursive rule).

Let \(M \) be a Datalog program whose rules are numbered from 1 to \(n \), in some order. For each rule \(r_i \) in \(M \), we choose a discriminating sequence \(\upsilon_1(r_i) \) and a discriminating function \(h_i \). The discriminating function is defined as follows:

\[
\upsilon_1(r_i) \rightarrow \mathcal{P}
\]

The meaning of the predicate symbols \(\upsilon_{in}^i, \upsilon_{out}^i \), etc., and of \(\mathcal{P} \) are the same as in Section 3. If \(A \) is any atom with predicate symbol \(t \), then \(A_{in}^i \) is the atom with the predicate symbol \(\upsilon_{in}^i \) and the same arguments. Thus, for example, if \(A \) denotes the atom \(sg(U, V) \), then \(A_{in}^i \) denotes the atom \(sg_{\upsilon_{in}^i}^i(U, V) \). Likewise, we define \(A_{out}^i \) and \(A_{out}^i \).

The program to be executed at processor \(i \) consists of the following four steps, and is denoted by \(T_i \):

1. **Processing.** Let \(A - B, C \) be a rule \(r \) in \(M \), with discriminating sequence \(\upsilon_1(r) \) and discriminating function \(h \). Then, include the following rule in \(T_i \):

\[
A_{out}^i - B_{in}^i, C_{in}^i, h(\upsilon_1(r)) = \iota
\]

2. **Sending.** Let \(r \) be a rule in \(M \), with discriminating sequence \(\upsilon_1(r) \) and discriminating function \(h \). For every recursive atom \(C \) appearing in \(r \) and every \(\iota \in \mathcal{P} \), include the following rules in \(T_i \):

\[
C_{out}^i, h(\upsilon_1(r)) = \iota
\]

3. **Receiving.** Let \(W \) be a sequence of all distinct variables not appearing in the original program. For every recursive predicate \(t \) appearing in the program \(M \) and every \(\iota \in \mathcal{P} \), introduce the following rule in \(T_i \), where \(S \) denotes \(t(W) \):

\[
S_{in}^i \rightarrow S_{out}^i
\]

4. **Final Pooling.** Let \(T = \bigcup T_i \) for every recursive predicate \(t \), include the following rule in \(T_i \):

\[
S - S_{out}^i
\]

Example 8: Let \(M \) be the following non-linear program to compute the ancestor relation \(anc \) of a given parent relation \(par \):

\[
\begin{align*}
\tau_1 & : anc(X, Y) & - par(X, Y) \\
\tau_2 & : anc(X, Y) & - anc(Z, Y), anc(Z, Y)
\end{align*}
\]

Suppose \(\upsilon(\tau_1) = \{ Y \} \), and \(\upsilon(\tau_2) = \{ Z \} \), and \(h_1 = h_2 = h \), where \(h \) is some arbitrary discriminating function.

The four execution steps of the program \(T \) are:

1. **Processing.**

\[
\begin{align*}
anc_{out}^1(X, Y) & - par(X, Y), h(Y) = \iota \\
anc_{out}^1(X, Y) & - anc_{in}^1(Z, Y), anc_{in}^1(Z, Y), h(Z) = \iota
\end{align*}
\]

2. **Sending.**

\[
\begin{align*}
anc_{out}^2(X, Z) & - anc_{out}^1(Z, Z), h(Z) = \iota \\
anc_{out}^2(Z, Y) & - anc_{out}^1(Z, Y), h(Z) = \iota
\end{align*}
\]

3. **Receiving.**

\[
anc_{in}^1(W_1, W_2) - anc_{in}^2(W_1, W_2)
\]

4. **Final Pooling.**

\[
anc_{out}^1(W_1, W_2) - anc_{out}^2(W_1, W_2)
\]

The following theorem asserts the correctness of the transformation:

Theorem 5: Let \(T = \bigcup \mathcal{T}_i \). For every input of the base relations, the interpretation of every derived predicate symbol in the least model of \(M \) is identical to the interpretation of the same predicate symbol in the least model of \(T \).

The base relations are distributed among the processors in the following manner: Suppose \(r \) is a rule with discriminating sequence \(\upsilon_1(r) \) and \(D \) is a base atom appearing in \(r \). If the variables appearing in \(\upsilon_1(r) \) do not appear in \(D \), then \(D \) is shared/replicated among the processors. Otherwise, the fragment of \(D \) accessed by processor \(i \) is denoted by \(D_{in}^i \) and is defined by

\[
D_{in}^i - D_i, h(\upsilon_1(r)) = \iota
\]

As argued in Section 3, all variables appearing in a discriminating sequence of a rule \(r \) must also appear in at least one atom in the body of \(r \). The parallelization scheme presented above is non-redundant in the precise sense described below:

Definition 4: Let \(M \) be a Datalog program, and \(I \) be the input database to \(M \). Then, we say that a substitution \(\theta \) is a successful ground substitution for a rule \(r \) if \(\theta \) instantiates all the variables occurring in rule \(r \) by constants and doesn’t instantiate any other variable.
2 Each of the atoms in the set \(\{A\theta, B\theta, \ldots, C\theta\} \) is either a fact in the database \(I \) or is a fact in the output (i.e., the least model).

Theorem 6. Let \(M \) be a given Datalog program. Let \(T \) be the Datalog program obtained by rewriting \(M \) using any choice of discriminating sequences and discriminating functions. Then, given any input database \(I \), the number of distinct successful ground substitutions of rules in \(M \) is at least equal to the number of distinct successful ground substitutions of the processing rules in \(T \). □

8 Conclusions

In this paper we have built on previously reported work and extended the results. Our results include the results by Wolfson, Silberschatz and Cohen [19, 18, 6] and Valduriez [16] as special cases.

We have observed that, for the class of programs considered, there is a spectrum of equivalent parallel executions, and that a tradeoff between non-redundancy and communication exists for these. Consequently, the particular scheme used in a compiler may be dependent on the underlying characteristics of the architecture e.g., computation cost as opposed to communication cost.

Our results in Section 5 further show how the rewriting method at compile time can be adapted to the architecture of the system.

The results in this paper are qualitative and obviously, are no substitute for detailed performance studies that would consider such issues as load balancing, processor utilization etc. We intend to investigate these systematically in the future.

The results presented in this paper and others, that we intend to discuss in future work, form the beginning of a theory for bottom-up, parallel evaluation that is controlled by discriminating functions based upon hashing.

References

