Chapter 6: Formal Relational Query Languages
Outline

- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus
Relational Algebra

- Procedural language
- Six basic operators
 - select: \(\sigma \)
 - project: \(\Pi \)
 - union: \(\cup \)
 - set difference: \(- \)
 - Cartesian product: \(\times \)
 - rename: \(\rho \)
- The operators take one or two relations as inputs and produce a new relation as a result.
Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(r) = \{ t \mid t \in r \text{ and } p(t) \}$$

Where p is a formula in propositional calculus consisting of terms
connected by: \land (and), \lor (or), \neg (not)
Each term is one of:

- <attribute> op <attribute> or <constant>

where op is one of: $=$, \neq, $>$, \geq, $<$, \leq

- Example of selection:

$$\sigma_{\text{dept_name}="Physics"}(\text{instructor})$$
Project Operation

- Notation:
 \[\Pi_{A_1, A_2, \ldots, A_k}(r) \]
 where \(A_1, A_2 \) are attribute names and \(r \) is a relation name.

- The result is defined as the relation of \(k \) columns obtained by erasing the columns that are not listed.

- Duplicate rows removed from result, since relations are sets.

- Example: To eliminate the \textit{dept_name} attribute of \textit{instructor}
 \[\Pi_{ID, name, salary}(\textit{instructor}) \]
Union Operation

- Notation: \(r \cup s \)
- Defined as:
 \[
 r \cup s = \{ t \mid t \in r \text{ or } t \in s \}
 \]
- For \(r \cup s \) to be valid.
 1. \(r, s \) must have the same **arity** (same number of attributes)
 2. The attribute domains must be **compatible** (example: 2\(^{nd}\) column of \(r \) deals with the same type of values as does the 2\(^{nd}\) column of \(s \))
- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both
 \[
 \Pi_{course _id} (\sigma \text{ semester="Fall" } \Lambda \text{ year=2009}(section)) \cup \\
 \Pi_{course _id} (\sigma \text{ semester="Spring" } \Lambda \text{ year=2010}(section))
 \]
Set Difference Operation

- Notation \(r - s \)
- Defined as:
 \[
 r - s = \{ t | t \in r \text{ and } t \notin s \}
 \]

- Set differences must be taken between compatible relations.
 - \(r \) and \(s \) must have the same arity
 - attribute domains of \(r \) and \(s \) must be compatible

- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

\[
\Pi_{course_id} (\sigma_{semester=\text{“Fall”} \land year=2009} (section)) - \\
\Pi_{course_id} (\sigma_{semester=\text{“Spring”} \land year=2010} (section))
\]
Set-Intersection Operation

- Notation: \(r \cap s \)
- Defined as:
 \[
 r \cap s = \{ t \mid t \in r \text{ and } t \in s \}
 \]
- Assume:
 - \(r, s \) have the same arity
 - attributes of \(r \) and \(s \) are compatible
- Note: \(r \cap s = r - (r - s) \)
Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

 $$r \times s = \{ t q \mid t \in r \text{ and } q \in s \}$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.
Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

 \[\rho_x(E) \]

 returns the expression \(E \) under the name \(X \)

- If a relational-algebra expression \(E \) has arity \(n \), then

 \[\rho_x(A_1, A_2, \ldots, A_n)(E) \]

 returns the result of expression \(E \) under the name \(X \), and with the attributes renamed to \(A_1, A_2, \ldots, A_n \).
Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $E_1 \cup E_2$
 - $E_1 - E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 - $\Pi_S(E_1)$, S is a list consisting of some of the attributes in E_1
 - $\rho_x(E_1)$, x is the new name for the result of E_1
Tuple Relational Calculus
Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form
 \[\{ t \mid P(t) \} \]
- It is the set of all tuples \(t \) such that predicate \(P \) is true for \(t \)
- \(t \) is a tuple variable, \(t[A] \) denotes the value of tuple \(t \) on attribute \(A \)
- \(t \in r \) denotes that tuple \(t \) is in relation \(r \)
- \(P \) is a formula similar to that of the predicate calculus
Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)
3. Set of connectives: and (∧), or (v), not (¬)
4. Implication (⇒): $x \Rightarrow y$, if x if true, then y is true
 \[x \Rightarrow y \equiv \neg x \lor y \]
5. Set of quantifiers:
 - $\exists t \in r (Q(t)) \equiv "there \ exists" \ a \ tuple \ in \ t \ in \ relation \ r$
 such that predicate $Q(t)$ is true
 - $\forall t \in r (Q(t)) \equiv Q \ is \ true \ "for \ all" \ tuples \ t \ in \ relation \ r$
Example Queries

- Find the ID, name, dept_name, salary for instructors whose salary is greater than $80,000

\[\{ t \mid t \in instructor \land t[salary] > 80000 \} \]

Notice that a relation on schema (ID, name, dept_name, salary) is implicitly defined by the query.

- As in the previous query, but output only the ID attribute value

\[\{ t \mid \exists s \in instructor (t[ID] = s[ID] \land s[salary] > 80000) \} \]

Notice that a relation on schema (ID) is implicitly defined by the query.
Example Queries

- Find the names of all instructors whose department is in the Watson building

\[
\{ t \mid \exists s \in instructor (t [\text{name}] = s [\text{name}] \\
\quad \wedge \exists u \in department (u [\text{dept_name}] = s[\text{dept_name}] \\
\quad \quad \wedge u [\text{building}] = \text{"Watson"}))\}
\]

- Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

\[
\{ t \mid \exists s \in section (t [\text{course_id}] = s [\text{course_id}] \\
\quad s [\text{semester}] = \text{"Fall"} \wedge s [\text{year}] = 2009 \\
\quad \lor \exists u \in section (t [\text{course_id}] = u [\text{course_id}] \\
\quad \quad u [\text{semester}] = \text{"Spring"} \wedge u [\text{year}] = 2010)\}
\]
Example Queries

- Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

\[\{ t | \exists s \in \text{section} (t [\text{course_id}] = s [\text{course_id}] \land \\
 s [\text{semester}] = \text{"Fall"} \land s [\text{year}] = 2009 \\
 \land \exists u \in \text{section} (t [\text{course_id}] = u [\text{course_id}] \land \\
 u [\text{semester}] = \text{"Spring"} \land u [\text{year}] = 2010) \} \]

- Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

\[\{ t | \exists s \in \text{section} (t [\text{course_id}] = s [\text{course_id}] \land \\
 s [\text{semester}] = \text{"Fall"} \land s [\text{year}] = 2009 \\
 \land \neg \exists u \in \text{section} (t [\text{course_id}] = u [\text{course_id}] \land \\
 u [\text{semester}] = \text{"Spring"} \land u [\text{year}] = 2010) \} \]
Universal Quantification

- Find all students who have taken all courses offered in the Biology department

\[
\{ t \mid \exists r \in \text{student} \ (t \ [ID] = r \ [ID]) \land \\
(\forall u \in \text{course} \ (u \ [\text{dept}_\text{name}] = \text{"Biology"}) \Rightarrow \\
\exists s \in \text{takes} \ (t \ [ID] = s \ [ID] \land \\
\ s \ [\text{course}_\text{id}] = u \ [\text{course}_\text{id}])\}
\]
Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, \{ t \mid \neg t \in r \} results in an infinite relation if the domain of any attribute of relation \(r \) is infinite.
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression \{t \mid P(t)\} in the tuple relational calculus is safe if every component of \(t \) appears in one of the relations, tuples, or constants that appear in \(P \).

 - NOTE: this is more than just a syntax condition.

 - E.g. \{ t \mid t[A] = 5 \lor \text{true} \} is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in \(P \).
Consider again that query to find all students who have taken all courses offered in the Biology department

\[
\{ t \mid \exists r \in \text{student} \ (t [ID] = r [ID]) \land \\
(\forall u \in \text{course} \ (u [\text{dept}_\text{name}] = \text{"Biology"}) \Rightarrow \\
\exists s \in \text{takes} \ (t [ID] = s [ID] \land \\
s [\text{course}_\text{id}] = u [\text{course}_\text{id}])\}
\]

Without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.
Domain Relational Calculus
Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

 \[\{ < x_1, x_2, ..., x_n > \mid P (x_1, x_2, ..., x_n) \} \]

 - \(x_1, x_2, ..., x_n \) represent domain variables
 - \(P \) represents a formula similar to that of the predicate calculus
Example Queries

- Find the ID, name, dept_name, salary for instructors whose salary is greater than $80,000
 \[
 \{< i, n, d, s> | < i, n, d, s> \in instructor \land s > 80000\}\]

- As in the previous query, but output only the ID attribute value
 \[
 \{< i> | < i, n, d, s> \in instructor \land s > 80000\}\]

- Find the names of all instructors whose department is in the Watson building
 \[
 \{< n > | \exists i, d, s (< i, n, d, s > \in instructor \\
 \land \exists b, a (< d, b, a> \in department \land b = “Watson”))\}\}
Example Queries

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

\[\{<c> | \exists a, s, y, b, r, t (<c, a, s, y, b, r, t > \in section \land
\quad s = \text{“Fall”} \land y = 2009) \lor
\exists a, s, y, b, r, t (<c, a, s, y, b, r, t > \in section] \land
\quad s = \text{“Spring”} \land y = 2010)\} \]

This case can also be written as

\[\{<c> | \exists a, s, y, b, r, t (<c, a, s, y, b, r, t > \in section \land
\quad (s = \text{“Fall”} \land y = 2009) \lor (s = \text{“Spring”} \land y = 2010))\} \]

Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

\[\{<c> | \exists a, s, y, b, r, t (<c, a, s, y, b, r, t > \in section \land
\quad s = \text{“Fall”} \land y = 2009) \land
\exists a, s, y, b, r, t (<c, a, s, y, b, r, t > \in section] \land
\quad s = \text{“Spring”} \land y = 2010)\} \]
Safety of Expressions

The expression:

\[\{ < x_1, x_2, \ldots, x_n > \mid P (x_1, x_2, \ldots, x_n) \} \]

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from \(\text{dom} (P) \) (that is, the values appear either in \(P \) or in a tuple of a relation mentioned in \(P \)).

2. For every “there exists” subformula of the form \(\exists x \ (P_1(x)) \), the subformula is true if and only if there is a value of \(x \) in \(\text{dom} (P_1) \) such that \(P_1(x) \) is true.

3. For every “for all” subformula of the form \(\forall x \ (P_1(x)) \), the subformula is true if and only if \(P_1(x) \) is true for all values \(x \) from \(\text{dom} (P_1) \).
Find all students who have taken all courses offered in the Biology department

\[
\{ <i> \mid \exists \ n, \ d, \ tc \ (<i, \ n, \ d, \ tc> \in student \ \wedge \\
(\forall \ ci, \ ti, \ dn, \ cr \ (<ci, \ ti, \ dn, \ cr> \in course \ \wedge \ dn = \text{“Biology”} \\
\Rightarrow \exists \ si, \ se, \ y, \ g \ (<i, \ ci, \ si, \ se, \ y, \ g> \in takes)))}
\]

Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.
End of Chapter 6