Chapter 20: Data Analysis
Chapter 20: Data Analysis

- Decision Support Systems
- Data Warehousing
- Data Mining
- Classification
- Association Rules
- Clustering
Decision Support Systems

- **Decision-support systems** are used to make business decisions, often based on data collected by on-line transaction-processing systems.

- Examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?

- Examples of data used for making decisions
 - Retail sales transaction details
 - Customer profiles (income, age, gender, etc.)
Decision-Support Systems: Overview

- **Data analysis** tasks are simplified by specialized tools and SQL extensions
 - Example tasks
 - For each product category and each region, what were the total sales in the last quarter and how do they compare with the same quarter last year
 - As above, for each product category and each customer category

- **Statistical analysis** packages (e.g., S++) can be interfaced with databases
 - Statistical analysis is a large field, but not covered here

- **Data mining** seeks to discover knowledge automatically in the form of statistical rules and patterns from large databases.

- A **data warehouse** archives information gathered from multiple sources, and stores it under a unified schema, at a single site.
 - Important for large businesses that generate data from multiple divisions, possibly at multiple sites
 - Data may also be purchased externally
Data Warehousing

- Data sources often store only current data, not historical data
- Corporate decision making requires a unified view of all organizational data, including historical data
- A **data warehouse** is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site
 - Greatly simplifies querying, permits study of historical trends
 - Shifts decision support query load away from transaction processing systems
Data Warehousing

- data source 1
- data source 2
- \ldots
- data source \(n \)

Data loaders

DBMS

Data warehouse

query and analysis tools
Design Issues

When and how to gather data

- **Source driven architecture**: data sources transmit new information to warehouse, either continuously or periodically (e.g., at night)
- **Destination driven architecture**: warehouse periodically requests new information from data sources
- Keeping warehouse exactly synchronized with data sources (e.g., using two-phase commit) is too expensive
 - Usually OK to have slightly out-of-date data at warehouse
 - Data/updates are periodically downloaded from online transaction processing (OLTP) systems.

What schema to use

- Schema integration
More Warehouse Design Issues

- **Data cleansing**
 - E.g., correct mistakes in addresses (misspellings, zip code errors)
 - *Merge* address lists from different sources and *purge* duplicates

- **How to propagate updates**
 - Warehouse schema may be a (materialized) view of schema from data sources

- **What data to summarize**
 - Raw data may be too large to store on-line
 - Aggregate values (totals/subtotals) often suffice
 - Queries on raw data can often be transformed by query optimizer to use aggregate values
Warehouse Schemas

- Dimension values are usually encoded using small integers and mapped to full values via dimension tables
- Resultant schema is called a **star schema**
 - More complicated schema structures
 - **Snowflake schema**: multiple levels of dimension tables
 - **Constellation**: multiple fact tables
Data Mining

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns.

- **Prediction** based on past history:
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history.
 - Predict if a pattern of phone calling card usage is likely to be fraudulent.

- Some examples of prediction mechanisms:
 - **Classification**
 - Given a new item whose class is unknown, predict to which class it belongs.
 - **Regression** formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value.
Data Mining (Cont.)

- **Descriptive Patterns**
 - **Associations**
 - Find books that are often bought by “similar” customers. If a new such customer buys one such book, suggest the others too.
 - Associations may be used as a first step in detecting causation
 - E.g., association between exposure to chemical X and cancer,
 - **Clusters**
 - E.g., typhoid cases were clustered in an area surrounding a contaminated well
 - Detection of clusters remains important in detecting epidemics
Classification Rules

Classification rules help assign new objects to classes.

- E.g., given a new automobile insurance applicant, should he or she be classified as low risk, medium risk or high risk?

Classification rules for above example could use a variety of data, such as educational level, salary, age, etc.

- \(\forall \text{ person } P, \ P.\text{degree} = \text{masters and } P.\text{income} > 75,000 \) \(\Rightarrow P.\text{credit} = \text{excellent} \)

- \(\forall \text{ person } P, \ P.\text{degree} = \text{bachelors and} \)
 \((P.\text{income} \geq 25,000 \text{ and } P.\text{income} \leq 75,000) \) \(\Rightarrow P.\text{credit} = \text{good} \)

Rules are not necessarily exact: there may be some misclassifications.

Classification rules can be shown compactly as a decision tree.
Decision Tree

degree

- none
 - income
 - 50K
 - bad
 - 100K
 - average
 - 50 to 100K
 - good

- bachelors
 - income
 - 50K
 - good
 - =50K
 - 25 to 75K

- masters
 - income
 - 25K
 - average
 - 75K

- doctorate
 - income
 - 25K
 - excellent
Construction of Decision Trees

- **Training set**: a data sample in which the classification is already known.

- **Greedy** top down generation of decision trees.
 - Each internal node of the tree partitions the data into groups based on a *partitioning attribute*, and a *partitioning condition* for the node.
 - **Leaf** node:
 - all (or most) of the items at the node belong to the same class, or
 - all attributes have been considered, and no further partitioning is possible.
Best Splits

- Pick best attributes and conditions on which to partition
- The purity of a set S of training instances can be measured quantitatively in several ways.
 - Notation: number of classes $= k$, number of instances $= |S|$, fraction of instances in class $i = p_i$.
- The **Gini** measure of purity is defined as

 \[
 \text{Gini} (S) = 1 - \sum_{i=1}^{k} p_i^2
 \]
 - When all instances are in a single class, the Gini value is 0
 - It reaches its maximum (of $1 - 1/k$) if each class the same number of instances.
Another measure of purity is the entropy measure, which is defined as

$$\text{entropy} (S) = - \sum_{i=1}^{k} p_i \log_2 p_i$$

When a set S is split into multiple sets S_i, $i=1, 2, \ldots, r$, we can measure the purity of the resultant set of sets as:

$$\text{purity}(S_1, S_2, \ldots, S_r) = \sum_{i=1}^{r} \frac{|S_i|}{|S|} \text{purity} (S_i)$$

The information gain due to particular split of S into S_i, $i = 1, 2, \ldots, r$

$$\text{Information-gain} (S, \{S_1, S_2, \ldots, S_r\}) = \text{purity}(S) - \text{purity} (S_1, S_2, \ldots S_r)$$
Best Splits (Cont.)

- Measure of “cost” of a split:
 \[
 \text{Information-content } \left(S, \{ S_1, S_2, \ldots, S_r \} \right) = - \sum_{i=1}^{r} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}
 \]

- **Information-gain ratio** = \[
 \frac{\text{Information-gain } \left(S, \{ S_1, S_2, \ldots, S_r \} \right)}{\text{Information-content } \left(S, \{ S_1, S_2, \ldots, S_r \} \right)}
 \]

- The best split is the one that gives the maximum information gain ratio
Finding Best Splits

- Categorical attributes (with no meaningful order):
 - Multi-way split, one child for each value
 - Binary split: try all possible breakup of values into two sets, and pick the best

- Continuous-valued attributes (can be sorted in a meaningful order)
 - Binary split:
 - Sort values, try each as a split point
 - E.g., if values are 1, 10, 15, 25, split at \(\leq 1, \leq 10, \leq 15 \)
 - Pick the value that gives best split
 - Multi-way split:
 - A series of binary splits on the same attribute has roughly equivalent effect
Decision-Tree Construction Algorithm

Procedure $GrowTree\ (S\)$
 Partition (S);

Procedure Partition (S)
 if (purity (S) > δ_p or $|S| < \delta_s$) then
 return;
 for each attribute A
 evaluate splits on attribute A;
 Use best split found (across all attributes) to partition
 S into S_1, S_2, …., S_r,
 for $i = 1, 2, …., r$
 Partition (S_i);
Other Types of Classifiers

- Neural net classifiers are studied in artificial intelligence and are not covered here.
- Bayesian classifiers use **Bayes theorem**, which says

\[
p (c_j \mid d) = p (d \mid c_j) p (c_j) / p (d)
\]

where

- \(p (c_j \mid d) \) = probability of instance \(d \) being in class \(c_j \),
- \(p (d \mid c_j) \) = probability of generating instance \(d \) given class \(c_j \),
- \(p (c_j) \) = probability of occurrence of class \(c_j \), and
- \(p (d) \) = probability of instance \(d \) occurring.
Naïve Bayesian Classifiers

Bayesian classifiers require

- computation of $p \left(d \mid c_j \right)$
- precomputation of $p \left(c_j \right)$
- $p \left(d \right)$ can be ignored since it is the same for all classes

To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate

$$p \left(d \mid c_j \right) = p \left(d_1 \mid c_j \right) \times p \left(d_2 \mid c_j \right) \times \cdots \times p \left(d_n \mid c_j \right)$$

- Each of the $p \left(d_i \mid c_j \right)$ can be estimated from a histogram on d_i values for each class c_j
 - the histogram is computed from the training instances
- Histograms on multiple attributes are more expensive to compute and store
Regression

Regression deals with the prediction of a value, rather than a class.

- Given values for a set of variables, X_1, X_2, \ldots, X_n, we wish to predict the value of a variable Y.

One way is to infer coefficients a_0, a_1, \ldots, a_n such that

$$Y = a_0 + a_1 \cdot X_1 + a_2 \cdot X_2 + \ldots + a_n \cdot X_n$$

Finding such a linear polynomial is called **linear regression**.

- In general, the process of finding a curve that fits the data is also called **curve fitting**.

The fit may only be approximate

- because of noise in the data, or
- because the relationship is not exactly a polynomial

Regression aims to find coefficients that give the best possible fit.
Retail shops are often interested in associations between different items that people buy.

- Someone who buys bread is quite likely also to buy milk
- A person who bought the book *Database System Concepts* is quite likely also to buy the book *Operating System Concepts*.

Associations information can be used in several ways.

- E.g., when a customer buys a particular book, an online shop may suggest associated books.

Association rules:

\[\text{bread} \Rightarrow \text{milk} \quad \text{DB-Concepts, OS-Concepts} \Rightarrow \text{Networks} \]

- Left hand side: **antecedent**, right hand side: **consequent**
- An association rule must have an associated **population**; the population consists of a set of **instances**
 - E.g., each transaction (sale) at a shop is an instance, and the set of all transactions is the population
Association Rules (Cont.)

- Rules have an associated support, as well as an associated confidence.
- **Support** is a measure of what fraction of the population satisfies both the antecedent and the consequent of the rule.
 - E.g., suppose only 0.001 percent of all purchases include milk and screwdrivers. The support for the rule is $\text{milk} \Rightarrow \text{screwdrivers}$ is low.
- **Confidence** is a measure of how often the consequent is true when the antecedent is true.
 - E.g., the rule $\text{bread} \Rightarrow \text{milk}$ has a confidence of 80 percent if 80 percent of the purchases that include bread also include milk.
Finding Association Rules

- We are generally only interested in association rules with reasonably high support (e.g., support of 2% or greater)
- Naïve algorithm
 1. Consider all possible sets of relevant items.
 2. For each set find its support (i.e., count how many transactions purchase all items in the set).
 - **Large itemsets**: sets with sufficiently high support
 3. Use large itemsets to generate association rules.
 1. From itemset \(A \) generate the rule \(A - \{b\} \Rightarrow b \) for each \(b \in A \).
 - Support of rule = support (\(A \)).
 - Confidence of rule = support (\(A \)) / support (\(A - \{b\} \)).
Finding Support

- Determine support of itemsets via a single pass on set of transactions
 - Large itemsets: sets with a high count at the end of the pass
- If memory not enough to hold all counts for all itemsets use multiple passes, considering only some itemsets in each pass.
- Optimization: Once an itemset is eliminated because its count (support) is too small none of its supersets needs to be considered.
- The \textit{a priori} technique to find large itemsets:
 - Pass 1: count support of all sets with just 1 item. Eliminate those items with low support
 - Pass i: \textbf{candidates}: every set of i items such that all its $i-1$ item subsets are large
 - Count support of all candidates
 - Stop if there are no candidates
Other Types of Associations

- Basic association rules have several limitations
- Deviations from the expected probability are more interesting
 - E.g., if many people purchase bread, and many people purchase cereal, quite a few would be expected to purchase both
 - We are interested in **positive** as well as **negative correlations** between sets of items
 - Positive correlation: co-occurrence is higher than predicted
 - Negative correlation: co-occurrence is lower than predicted
- Sequence associations / correlations
 - E.g., whenever bonds go up, stock prices go down in 2 days
- Deviations from temporal patterns
 - E.g., deviation from a steady growth
 - E.g., sales of winter wear go down in summer
 - Not surprising, part of a known pattern.
 - Look for deviation from value predicted using past patterns
Clustering

- Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster.

- Can be formalized using distance metrics in several ways:
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized.
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster.

- Has been studied extensively in statistics, but on small data sets:
 - Data mining systems aim at clustering techniques that can handle very large data sets.
 - E.g., the Birch clustering algorithm (more shortly).
Hierarchical Clustering

- Example from biological classification
 - (the word classification here does not mean a prediction mechanism)

 chordata

 mammalia reptilia

 leopards humans snakes crocodiles

- Other examples: Internet directory systems (e.g., Yahoo, more on this later)

 Agglomerative clustering algorithms

 - Build small clusters, then cluster small clusters into bigger clusters, and so on

 Divisive clustering algorithms

 - Start with all items in a single cluster, repeatedly refine (break) clusters into smaller ones
Clustering Algorithms

- Clustering algorithms have been designed to handle very large datasets
- E.g., the **Birch algorithm**
 - Main idea: use an in-memory R-tree to store points that are being clustered
 - Insert points one at a time into the R-tree, merging a new point with an existing cluster if it is less than some δ distance away
 - If there are more leaf nodes than fit in memory, merge existing clusters that are close to each other
 - At the end of first pass we get a large number of clusters at the leaves of the R-tree
 - Merge clusters to reduce the number of clusters
Collaborative Filtering

- Goal: predict what movies/books/… a person may be interested in, on the basis of
 - Past preferences of the person
 - Other people with similar past preferences
 - The preferences of such people for a new movie/book/…

- One approach based on repeated clustering
 - Cluster people on the basis of preferences for movies
 - Then cluster movies on the basis of being liked by the same clusters of people
 - Again cluster people based on their preferences for (the newly created clusters of) movies
 - Repeat above till equilibrium

- Above problem is an instance of **collaborative filtering**, where users collaborate in the task of filtering information to find information of interest
Other Types of Mining

- **Text mining**: application of data mining to textual documents
 - cluster Web pages to find related pages
 - cluster pages a user has visited to organize their visit history
 - classify Web pages automatically into a Web directory

- **Data visualization** systems help users examine large volumes of data and detect patterns visually
 - Can visually encode large amounts of information on a single screen
 - Humans are very good at detecting visual patterns
End of Chapter
Figure 20.01

The diagram illustrates a data warehouse system with the following components:

- **Data Sources**: Data source 1, data source 2, ..., data source n are connected to the data loaders.
- **Data Loaders**: These components are responsible for integrating data from various sources.
- **Database Management System (DBMS)**: This centralizes the data and provides a single point of access for querying and analysis.
- **Data Warehouse**: Stores the integrated data.
- **Query and Analysis Tools**: Access the data warehouse for querying and analyzing the data.