
C H A P T E R 4

Intermediate SQL

Practice Exercises

4.1 Write the following queries in SQL:

a. Display a list of all instructors, showing their ID, name, and the num-
ber of sections that they have taught. Make sure to show the number
of sections as 0 for instructors who have not taught any section. Your
query should use an outerjoin, and should not use scalar subqueries.

b. Write the same query as above, but using a scalar subquery, without
outerjoin.

c. Display the list of all course sections offered in Spring 2010, along
with the names of the instructors teaching the section. If a section has
more than one instructor, it should appear as many times in the result
as it has instructors. If it does not have any instructor, it should still
appear in the result with the instructor name set to “—”.

d. Display the list of all departments, with the total number of instructors
in each department, without using scalar subqueries. Make sure to
correctly handle departments with no instructors.

Answer:

a. Display a list of all instructors, showing their ID, name, and the num-
ber of sections that they have taught. Make sure to show the number
of sections as 0 for instructors who have not taught any section. Your
query should use an outerjoin, and should not use scalar subqueries.

select ID, name,
count(course id, section id, year,semester) as ’Number of sections’

from instructor natural left outer join teaches
group by ID, name

The above query should not be written using count(*) since count *
counts null values also. It could be written using count(section id), or

19

20 Chapter 4 Intermediate SQL

any other attribute from teaches which does not occur in instructor,
which would be correct although it may be confusing to the reader.
(Attributes that occur in instructor would not be null even if the in-
structor has not taught any section.)

b. Write the same query as above, but using a scalar subquery, without
outerjoin.

select ID, name,
(select count(*) as ’Number of sections’
from teaches T where T.id = I.id)

from instructor I

c. Display the list of all course sections offered in Spring 2010, along
with the names of the instructors teaching the section. If a section has
more than one instructor, it should appear as many times in the result
as it has instructors. If it does not have any instructor, it should still
appear in the result with the instructor name set to “−”.

select course id, section id, ID,
decode(name, NULL, ’−’, name)

from (section natural left outer join teaches)
natural left outer join instructor

where semester=’Spring’ and year= 2010

The query may also be written using the coalesce operator, by re-
placing decode(..) by coalesce(name, ’−’). A more complex version
of the query can be written using union of join result with another
query that uses a subquery to find courses that do not match; refer to
exercise 4.2.

d. Display the list of all departments, with the total number of instructors
in each department, without using scalar subqueries. Make sure to
correctly handle departments with no instructors.

select dept name, count(ID)
from department natural left outer join instructor
group by dept name

4.2 Outer join expressions can be computed in SQL without using the SQL

outer join operation. To illustrate this fact, show how to rewrite each of the
following SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

b. select * from student natural full outer join takes

Answer:

a. select * from student natural left outer join takes
can be rewritten as:

Exercises 21

select * from student natural join takes
union
select ID, name, dept name, tot cred, NULL, NULL, NULL, NULL, NULL
from student S1 where not exists

(select ID from takes T1 where T1.id = S1.id)

b. select * from student natural full outer join takes
can be rewritten as:

(select * from student natural join takes)
union
(select ID, name, dept name, tot cred, NULL, NULL, NULL, NULL, NULL
from student S1
where not exists

(select ID from takes T1 where T1.id = S1.id))
union
(select ID, NULL, NULL, NULL, course id, section id, semester, year, grade
from takes T1
where not exists

(select ID from student S1 whereT1.id = S1.id))

4.3 Suppose we have three relations r (A, B), s(B, C), and t(B, D), with all
attributes declared as not null. Consider the expressions

• r natural left outer join (s natural left outer join t), and

• (r natural left outer join s) natural left outer join t

a. Give instances of relations r , s and t such that in the result of the
second expression, attribute C has a null value but attribute D has a
non-null value.

b. Is the above pattern, with C null and D not null possible in the result
of the first expression? Explain why or why not.

Answer:

a. Consider r = (a,b), s = (b1,c1), t = (b,d). The second expression would
give (a,b,NULL,d).

b. It is not possible for D to be not null while C is null in the result of the
first expression, since in the subexpression s natural left outer join t,
it is not possible for C to be null while D is not null. In the overall
expression C can be null if and only if some r tuple does not have a
matching B value in s. However in this case D will also be null.

4.4 Testing SQL queries: To test if a query specified in English has been cor-
rectly written in SQL, the SQL query is typically executed on multiple test

22 Chapter 4 Intermediate SQL

databases, and a human checks if the SQL query result on each test database
matches the intention of the specification in English.

a. In Section Section 3.3.3The Natural Joinsubsection.3.3.3 we saw an ex-
ample of an erroneous SQL query which was intended to find which
courses had been taught by each instructor; the query computed the
natural join of instructor, teaches, and course, and as a result uninten-
tionally equated the dept name attribute of instructor and course. Give
an example of a dataset that would help catch this particular error.

b. When creating test databases, it is important to create tuples in refer-
enced relations that do not have any matching tuple in the referencing
relation, for each foreign key. Explain why, using an example query
on the university database.

c. When creating test databases, it is important to create tuples with null
values for foreign key attributes, provided the attribute is nullable
(SQL allows foreign key attributes to take on null values, as long as
they are not part of the primary key, and have not been declared as
not null). Explain why, using an example query on the university
database.

Hint: use the queries from Exercise Exercise 4.1Item.138.
Answer:

a. Consider the case where a professor in Physics department teaches an
Elec. Eng. course. Even though there is a valid corresponding entry
in teaches, it is lost in the natural join of instructor, teaches and course,
since the instructors department name does not match the department
name of the course. A dataset corresponding to the same is:

instructor = {(12345,’Guass’, ’Physics’, 10000)}
teaches = {(12345, ’EE321’, 1, ’Spring’, 2009)}
course = {(’EE321’, ’Magnetism’, ’Elec. Eng.’, 6)}

b. The query in question 0.a is a good example for this. Instructors who
have not taught a single course, should have number of sections as 0
in the query result. (Many other similar examples are possible.)

c. Consider the query

select * from teaches natural join instructor;

In the above query, we would lose some sections if teaches.ID is al-
lowed to be NULL and such tuples exist. If, just because teaches.ID is
a foreign key to instructor, we did not create such a tuple, the error in
the above query would not be detected.

4.5 Show how to define the view student grades (ID, GPA) giving the grade-
point average of each student, based on the query in Exercise ??; recall
that we used a relation grade points(grade, points) to get the numeric points

Exercises 23

associated with a letter grade. Make sure your view definition correctly
handles the case of null values for the grade attribute of the takes relation.
Answer: We should not add credits for courses with a null grade; further to
to correctly handle the case where a student has not completed any course,
we should make sure we don’t divide by zero, and should instead return a
null value.
We break the query into a subquery that finds sum of credits and sum
of credit-grade-points, taking null grades into account The outer query
divides the above to get the average, taking care of divide by 0.

create view student grades(ID, GPA) as
select ID, credit points / decode(credit sum, 0, NULL, credit sum)
from ((select ID, sum(decode(grade, NULL, 0, credits)) as credit sum,

sum(decode(grade, NULL, 0, credits*points)) as credit points
from(takes natural join course) natural left outer join grade points
group by ID)

union
select ID, NULL
from student
where ID not in (select ID from takes))

The view defined above takes care of NULL grades by considering the
creditpoints to be 0, and not adding the corresponding credits in credit sum.
The query above ensures that if the student has not taken any course with
non-NULL credits, and has credit sum = 0 gets a gpa of NULL. This avoid
the division by 0, which would otherwise have resulted.
An alternative way of writing the above query would be to use student
natural left outer join gpa, in order to consider students who have not
taken any course.

4.6 Complete the SQL DDL definition of the university database of Figure Fig-
ure 4.8Referential Integrityfigcnt.50 to include the relations student, takes,
advisor, and prereq.
Answer:

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) check (tot cred >= 0),
primary key (ID),
foreign key (dept name) references department

on delete set null);

24 Chapter 4 Intermediate SQL

create table takes
(ID varchar (5),
course id varchar (8),
section id varchar (8),
semester varchar (6),
year numeric (4,0),
grade varchar (2),
primary key (ID, course id, section id, semester, year),
foreign key (course id, section id, semester, year) references section

on delete cascade,
foreign key (ID) references student

on delete cascade);

create table advisor
(i id varchar (5),
s id varchar (5),
primary key (s ID),
foreign key (i ID) references instructor (ID)

on delete set null,
foreign key (s ID) references student (ID)

on delete cascade);

create table prereq
(course id varchar(8),
prereq id varchar(8),
primary key (course id, prereq id),
foreign key (course id) references course

on delete cascade,
foreign key (prereq id) references course);

4.7 Consider the relational database of Figure Figure 4.11figcnt.53. Give an SQL

DDL definition of this database. Identify referential-integrity constraints
that should hold, and include them in the DDL definition.
Answer:

create table employee
(person name char(20),
street char(30),
city char(30),
primary key (person name))

Exercises 25

create table works
(person name char(20),
company name char(15),
salary integer,
primary key (person name),
foreign key (person name) references employee,
foreign key (company name) references company)

create table company
(company name char(15),
city char(30),
primary key (company name))

ppcreate table manages
(person name char(20),
manager name char(20),
primary key (person name),
foreign key (person name) references employee,
foreign key (manager name) references employee)

Note that alternative datatypes are possible. Other choices for not null
attributes may be acceptable.

4.8 As discussed in Section Section 4.4.7Complex Check Conditions and Assertionssubsection.4.4.7,
we expect the constraint “an instructor cannot teach sections in two differ-
ent classrooms in a semester in the same time slot” to hold.

a. Write an SQL query that returns all (instructor, section) combinations
that violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion Section 4.4.7Complex Check Conditions and Assertionssubsection.4.4.7,
current generation database systems do not support such assertions,
although they are part of the SQL standard).

Answer:

a.

select ID, name, section id, semester, year, time slot id,
count(distinct building, room number)

from instructor natural join teaches natural join section
group by (ID, name, section id, semester, year, time slot id)
having count(building, room number) > 1

Note that the distinct keyword is required above. This is to allow two
different sections to run concurrently in the same time slot and are

26 Chapter 4 Intermediate SQL

taught by the same instructor, without being reported as a constraint
violation.

b.

create assertion check not exists
(select ID, name, section id, semester, year, time slot id,

count(distinct building, room number)
from instructor natural join teaches natural join section
group by (ID, name, section id, semester, year, time slot id)
having count(building, room number) > 1)

4.9 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee name char(20),
manager name char(20),
primary key employee name,
foreign key (manager name) references manager

on delete cascade)

Here, employee name is a key to the table manager, meaning that each em-
ployee has at most one manager. The foreign-key clause requires that every
manager also be an employee. Explain exactly what happens when a tuple
in the relation manager is deleted.
Answer: The tuples of all employees of the manager, at all levels, get
deleted as well! This happens in a series of steps. The initial deletion will
trigger deletion of all the tuples corresponding to direct employees of
the manager. These deletions will in turn cause deletions of second level
employee tuples, and so on, till all direct and indirect employee tuples are
deleted.

4.10 SQL-92 provides an n-ary operation called coalesce, which is defined as
follows: coalesce(A1, A2, . . . , An) returns the first nonnull Ai in the list
A1, A2, . . . , An, and returns null if all of A1, A2, . . . , An are null.
Let a and b be relations with the schemas A(name, address, title) and B(name,
address, salary), respectively. Show how to express a natural full outer join
b using the full outer-join operation with an on condition and the coalesce
operation. Make sure that the result relation does not contain two copies
of the attributes name and address, and that the solution is correct even if
some tuples in a and b have null values for attributes name or address.
Answer:

Exercises 27

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary

from a full outer join b on a.name = b.name and
a.address = b.address

4.11 Some researchers have proposed the concept of marked nulls. A marked
null ⊥i is equal to itself, but if i 6= j , then ⊥i 6= ⊥ j . One application of
marked nulls is to allow certain updates through views. Consider the view
instructor info (Section Section 4.2Viewssection.4.2). Show how you can use
marked nulls to allow the insertion of the tuple (99999, “Johnson”, “Music”)
through instructor info.
Answer: To insert the tuple (99999, “(”Johnson), “Music”) into the view
instructor info, we can do the following:
instructor ← (99999, “Johnson”,⊥k,⊥) ∪ instructor

department ← (⊥k, “Music′′,⊥) ∪ department
such that ⊥k is a new marked null not already existing in the database.
Note: “Music” here is the name of a building and may or may not be related
to Music department.

