CHAPTER 24

Advanced Application
Development

Practice Exercises

24.1 Many applications need to generate sequence numbers for each trans-
action.

a. Ifasequencecounterislocked in two-phase manner, it can become
a concurrency bottleneck. Explain why this may be the case.

b. Many database systems support built-in sequence counters that
are not locked in two-phase manner; when a transaction requests
a sequence number, the counter is locked, incremented and un-
locked.

i. Explain how such counters can improve concurrency.

ii. Explain why there may be gaps in the sequence numbers be-
longing to the final set of committed transactions.

Answer: If two-phase locking is used on the counter, the counter must
remain locked in exclusive mode until the transaction is done acquiring
locks. During that time, the counter is unavailable and no concurrent
transactions can be started regardless of whether they would have data
conflicts with the transaction holding the counter.

If locking is done outside the scope of a two-phase locking protocol,
the counter is locked only for the brief time it takes to increment the
counter. SInce there is no other operation besides increment performed
on the counter, this creates no problem except when a transaction aborts.
During an abort, the counter cannot be restored to its old value but
instead should remain as it stands. This means that some counter values
are unused since those values were assigned to aborted transactions. To
see why we cannot restore the old counter value, assume transaction
T, has counter value 100 and then T, is given the next value, 101. If
T, aborts and the counter were restored to 100, the value 100 would
be given to some other transaction T. and then 101 would be given to

9

10 Chapter 24 Advanced Application Development

a second transaction T;. Now we have two non-aborted transactions
with the same counter value.

24.2 Suppose you are given a relation 7 (a, b, c).

a.

Give an example of a situation under which the performance of
equality selection queries on attribute a can be greatly affected by
how 7 is clustered.

Suppose you also had range selection queries on attribute b. Can
you cluster r in such a way that the equality selection queries on
r.a and the range selection queries on r.b can both be answered
efficiently? Explain your answer.

If clustering as above is not possible, suggest how both types
of queries can be executed efficiently by choosing appropriate
indices.

Answer:

If is not clustered on a, tuples of r with a particular a-value could
be scattered throughout the area in which r is stored. This would
make it necessary to scan all of r. Clustering on a combined with
an index, would allow tuples of r with a particular a-value to be
retrieved directly.

This is possible only if there is a special relationship between a
and b such as “if tuple #; has an a-value less than the a-value of
tuple t,, then #; must have a b-value less than that of ,”. Aside
from special cases, such a clustering is not possible since the sort
order of the tuples on a is different from the sort order on b.

The physical order of the tuples cannot always be suited to both
queries. If r is clustered on 2 and we have a B*-tree index on b, the
first query can be executed very efficiently. For the second, we can
use the usual B*-tree range-query algorithm to obtain pointers to
all the tuples in the result relation, then sort those those pointers
so that any particular disk block is accessed only once.

24.3 Suppose that a database application does not appear to have a sin-
gle bottleneck; that is, CPU and disk utilization are both high, and all
database queues are roughly balanced. Does that mean the application
cannot be tuned further? Explain your answer.

Answer: it may still be tunable. Example using a materialized view
may reduce both CPU and disk utilization

24.4 Suppose a system runs three types of transactions. Transactions of type
A run at the rate of 50 per second, transactions of type B run at 100 per
second, and transactions of type C run at 200 per second. Suppose the
mix of transactions has 25 percent of type A, 25 percent of type B, and
50 percent of type C.

Practice Exercises 11

a. Whatis the average transaction throughput of the system, assum-
ing there is no interference between the transactions?

b. What factors may result in interference between the transactions
of different types, leading to the calculated throughput being
incorrect?

Answer:

a. Let there be 100 transactions in the system. The given mix of
transaction types would have 25 transactions each of type A and
B, and 50 transactions of type C. Thus the time taken to execute
transactions only of type Ais 0.5 seconds and that for transactions
only of type B or only of type C is 0.25 seconds. Given that the
transactions do not interfere, the total time taken to execute the
100 transactions is 0.5 4+ 0.25 4+ 0.25 = 1 second. i.e, the average
overall transaction throughput is 100 transactions per second.

b. One of the most important causes of transaction interference is
lock contention. In the previous example, assume that transac-
tions of type A and B are update transactions, and that those of
type C are queries. Due to the speed mismatch between the pro-
cessor and the disk, it is possible that a transaction of type A is
holding a lock on a “hot” item of data and waiting for a disk write
to complete, while another transaction (possibly of type B or C)
is waiting for the lock to be released by A. In this scenario some
CPU cycles are wasted. Hence, the observed throughput would
be lower than the calculated throughput.

Conversely, if transactions of type A and type B are disk bound,
and those of type C are CPU bound, and there is no lock con-
tention, observed throughput may even be better than calculated.
Lock contention can also lead to deadlocks, in which case some
transaction(s) will have to be aborted. Transaction aborts and
restarts (which may also be used by an optimistic concurrency
control scheme) contribute to the observed throughput being
lower than the calculated throughput.

Factors such as the limits on the sizes of data-structures and the
variance in the time taken by book-keeping functions of the trans-
action manager may also cause a difference in the values of the
observed and calculated throughput.

24.5 List some benefits and drawbacks of an anticipatory standard com-
pared to a reactionary standard.
Answer: In the absence of an anticipatory standard it may be difficult
to reconcile between the differences among products developed by
various organizations. Thus it may be hard to formulate a reactionary
standard without sacrificing any of the product development effort.
This problem has been faced while standardizing pointer syntax and
access mechanisms for the ODMG standard.

12 Chapter 24 Advanced Application Development

On the other hand, a reactionary standard is usually formed after ex-
tensive product usage, and hence has an advantage over an anticipa-
tory standard - that of built-in pragmatic experience. In practice, it has
been found that some anticipatory standards tend to be over-ambitious.
SQL-3 is an example of a standard that is complex and has a very large
number of features. Some of these features may not be implemented
for a long time on any system, and some, no doubt, will be found to be
inappropriate.

